A cadaveric radiographic analysis on the effect of extreme lateral interbody fusion cage placement with supplementary internal fixation on indirect spine decompression.

نویسندگان

  • German A Marulanda
  • Aniruddh Nayak
  • Ryan Murtagh
  • Brandon G Santoni
  • James B Billys
  • Antonio E Castellvi
چکیده

STUDY DESIGN Cadaveric Biomechanical and Radiographic Analysis. OBJECTIVE The purpose of this study was to quantify the changes in intervertebral height and lateral and central recess areas afforded by lateral interbody fusion cages with 2 supplemental forms of internal fixation in cadaveric specimens. BACKGROUND DATA When conservative treatment for symptomatic lumbar stenosis fails, traditional intervention has been direct posterior decompression. The minimally invasive, lateral transpsoas approach may be a viable alternative to direct decompression by providing restoration of the foraminal and intervertebral dimensions, yet few reports have examined the anatomic and radiographic changes that occur using this technique. METHODS Computed tomography (CT) scans were taken of 18 intact lumbar (L1-S1) cadaveric specimens under a 400 N preload. Intervertebral height, foraminal areas, and canal area were measured at L3-L4 and L4-L5. Thereafter, the cadaveric specimens were instrumented with lateral cages placed in the central or posterior third of the disk space at L3-L4 and L4-L5 and either (1) lateral plate (n=9) or (2) bilateral posterior pedicle screw fixation (n=9). All constructs were again subjected to a 400 N preload, postinstrumentation CT scans were taken, and changes in intervertebral height and lateral and central recess areas were calculated. RESULTS There was no effect of cage placement on any radiographic metric of indirect decompression for either fusion construct. In the lateral plate and pedicle screw groups, respectively, significant increases in average posterior disk height (30.9%, 60.1%), average right (35.3%, 61.5%) and left foraminal area (48.3%, 57.8%), and average canal area (32.3%, 33.3%) were observed. Pedicle screw instrumentation afforded a significantly greater increase in average posterior disk height and foraminal area compared with the lateral plate group, though there was no difference in the average increase in canal area afforded by either form of fixation. CONCLUSIONS The radiographic results reported here using a cadaveric model add validity to the underlying rationale described for the minimally invasive lateral approach technique. Increases in disk height, foraminal and canal areas were not dependent on cage positioning within the disk space. As intraoperative placement of a cage in the central portion of the disk is an easier and safer technique, our results suggest that central placement may be preferable in a clinical setting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects on inadvertent endplate fracture following lateral cage placement on range of motion and indirect spine decompression in lumbar spine fusion constructs: A cadaveric study

BACKGROUND The lateral transpsoas approach to interbody fusion is gaining popularity. Existing literature suggests that perioperative vertebra-related complications include endplate breach owing to aggressive enedplate preparation and poor bone quality. The acute effects of cage subsidence on stabilization and indirect decompression at the affected level are unknown. The purpose of this study w...

متن کامل

Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages.

BACKGROUND CONTEXT The lateral transpsoas approach to interbody fusion is gaining popularity because of its minimally invasive nature and resultant indirect neurologic decompression. The acute biomechanical stability of the lateral approach to interbody fusion is dependent on the type of supplemental internal fixation used. The two-hole lateral plate (LP) has been approved for clinical use for ...

متن کامل

Digitalized Design of Extraforaminal Lumbar Interbody Fusion: A Computer-Based Simulation and Cadaveric Study

PURPOSE This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. METHODS The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the...

متن کامل

Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.

STUDY DESIGN Controlled laboratory study. OBJECTIVE To evaluate the biomechanical characteristics of a new expandable interbody cage in single-segment posterior lumbar interbody fusion (PLIF) using cadaveric lumbar spines. SUMMARY OF BACKGROUND DATA One of the popular methods of treating lumbar spine pathologies involves a posterior lumbar interbody fusion using bilateral interbody nonexpan...

متن کامل

Interbody device endplate engagement effects on motion segment biomechanics.

BACKGROUND CONTEXT Stand-alone nonbiologic interbody fusion devices for the lumbar spine have been used for interbody fusion since the early 1990s. However, most devices lack the stability found in clinically successful circumferential fusion constructs. Stability results from cage geometry and device/vertebral endplate interface integrity. To date, there has not been a published comparative bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of spinal disorders & techniques

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2014